

НАСТРОЙКА ПРЕОБРАЗОВАТЕЛЕЙ ЧАСТОТЫ NATIVE NFD. **НАСОСНОЕ ПРИМЕНЕНИЕ**

Данная инструкция позволяет осуществить настройку преобразователя частоты Native NFD для запуска и остановки электродвигателя с кнопки, регулирования задания посредством потенциометра на пульте управления, работы по ПИДрегулятору с сигналом обратной связи от аналогового датчика давления 4-20мА, мониторинг «сухого хода» по реле давления, вывод сигнала аварии через реле. Документ рекомендуется использовать непосредственно с полной версией Руководства по эксплуатации.

Схема подключения:

 \wedge

Подключение питания и электродвигателя к преобразователю частоты должно осуществляться квалифицированным персоналом в строгом соответствии со схемами, представленными в Руководстве по эксплуатации.

- 1. Проверить правильность электрического подключения. Подать питание
- 2. Ввод параметров двигателя
 - СБРОС НА ЗАВОДСКИЕ НАСТРОЙКИ

Перед началом параметрирования преобразователя рекомендуется сбросить значения всех параметров к заводским значениям. Для этого необходимо установить P07-00=9 и нажать ENTER. После выполнения команды выключить питание ПЧ, снова включить и сбросить ошибку А.01 кнопкой STOP.

- ВЫБОР МЕТОДА УПРАВЛЕНИЯ ДВИГАТЕЛЕМ Для простых применений (насосы, вентиляторы) рекомендуется устанавливать скалярный (U/f=const) метод управления P0-02=0.
- АКТИВИРОВАТЬ МАКРОС НАСОСНОГО ПРИМЕНЕНИЯ РО-03=1
- ВВОД ПАРАМЕТРОВ ДВИГАТЕЛЯ
 - Параметры электродвигателя берутся непосредственно с его шильдика.

Nº	Параметр	Наименование	
1	P1-02	Тип двигателя	
2	P1-03	Номинальная мощность двигателя	
3	P1-04	Номинальное напряжение двигателя	
4	P1-05	Номинальная частота двигателя	
5	P1-06	Номинальный ток двигателя	
6	P1-07	Номинальная скорость двигателя	
7	P1-24	Число полюсов двигателя	

Список параметров:

• ПРОВЕДЕНИЕ АВТОНАСТРОЙКИ

Автонастройка двигателя используется для получения точных параметров двигателя и дальнейшей оптимизации характеристик управления. Для этого:

- Установите параметр Р01-13=2 Полная статическая автонастройка. На экране появится сообщение PUSH rUN
- Подтвердите, нажав кнопку RUN. В процессе автонастройки на экране появится сообщение –At-. По завершении процесса на экране отобразится сообщение PUSH Ent
- Подтвердите, нажав на потенциометр. На экране появится состояние готовности Г 0.0
- 3. Настройка защит
 - УСТАНОВКА ПРЕДЕЛА ВЫХОДНОГО ТОКА В % ОТ НОМИНАЛЬНОГО И ОГРАНИЧЕНИЕ МАКСИМАЛЬНОЙ ВЫХОДНОЙ ЧАСТОТЫ

Nº	Параметр	Наименование
1	P5-07	Ограничение максимального тока
2	P5-08	Ограничение максимальной частоты

- ЗАЩИТА ДВИГАТЕЛЯ ОТ ПЕРЕГРЕВА
 - При отсутствии в моторе датчиков защиты от перегрева, преобразователь частоты может обеспечить функцию тепловой защиты посредством расчета (ETR=электронное термореле) тепловой нагрузки двигателя. Расчетная тепловая нагрузка основана на токе двигателя и скорости двигателя. Для активации функции установите P5-26=2 (Аварийное сообщение электронного термореле)
- 4. Подключение датчика «сухого хода» (реле давления)
 - ПОДКЛЮЧИТЕ ВЫВОДЫ ОТ НОРМАЛЬНО-ЗАМКНУТЫХ КОНТАКТОВ РЕЛЕ К ЦИФРОВОМУ ВХОДУ DII И КЛЕММЕ ЗАЗЕМЛЕНИЯ GND СОГЛАСНО ПРЕДСТАВЛЕННОЙ СХЕМЕ

•	НАСТРОЙТЕ ФУНКЦИЮ	ДЛЯ ДИСКРЕТНОГО	ВХОДА DII СОГЛАСНО	ТАБЛИЦЕ:
---	-------------------	-----------------	--------------------	----------

Nº	Параметр	Наименование	Значение
1	P2-00	Выбор положительной/отрицательной логики для дискретных входов	4: DII (отрицательная логика для DII)
2	P2-07	Функция дискретного входа - клемма DI1	50: Вход сигнала о внешней ошибке
3	P2-21	Действия при поступлении на дискретный вход сигнала ошибки	5: Плавный останов и аварийный сигнал

В результате срабатывания реле на экране должна появиться ошибка «А.76» Внешний аварийный сигнал». После устранения для сброса необходимо нажать кнопку STOP.

- 5. Подключение кнопки «Пуск» с фиксацией
 - ПОДКЛЮЧИТЕ КНОПКУ ПУСК/СТОП К КЛЕММАМ FWD(ВПЕРЕД) И GND (ЗЕМЛЯ) СОГЛАСНО ПРЕДСТАВЛЕННОЙ СХЕМЕ
 - НАСТРОИТЬ ВХОД НА ВРАЩЕНИЕ ВПЕРЕД. ДЛЯ ЭТОГО УСТАНОВИТЬ ПАРАМЕТР P2-05=10
 - Проверить работу кнопки «Пуск» можно в параметре состояния дискретных сигналов Р9-22
- 6. Подключение аналогового датчика давления 4-20мА
 - ПОДКЛЮЧИТЕ ДАТЧИК ДАВЛЕНИЯ К КЛЕММАМ VDD(ПИТАНИЕ), AI2(СИГНАЛ), GND (ЗЕМЛЯ) СОГЛАСНО ПРЕДСТАВЛЕННОЙ СХЕМЕ
 - НАСТРОЙТЕ ФУНКЦИЮ ДЛЯ АНАЛОГОВОГО ВХОДА АІ2 СОГЛАСНО ТАБЛИЦЕ:

Nº	Параметр	Наименование	Значение
1	P3-09	Тип сигнала на аналоговом входе – Al2	1: Аналоговый по току
2	P3-11	Зона нулевого сигнала для аналогового входа AI2	2 мА
3	P3-14	Минимальный входной ток для аналогового входа Al2	4 мА
4	P3-15	Максимальный входной ток для аналогового входа AI2	20 мА
5	P3-49	Действие при снижении аналогового сигнала ниже минимального значения	5: Аварийный сигнал и останов на выбеге

Проверить показания датчика давления можно в параметре Р9-26

7. Настройка аварийного реле

При необходимости, релейный выход возможно настроить на сигнал аварии. Для этого следует установить P2-28=10. Задержка включения и выключения реле настраивается в параметрах P2-29 и P2-30 соответственно. Пример подключения реле указан в данном документе.

8. Базовые настройки ПИД-регулятора

Минимально необходимый набор параметров для настройки регулятора приводится ниже в таблице.

Nº	Параметр	Наименование	Значение
1	P0-11	Основной источник задания	21: использование ПИД- регулятора (устанавливается автоматически)
2	P4-00	Источник сигнала обратной связи ПИД-регулятора процесса (регулирование давления, расхода по внешнему датчику)	2: Аналоговый вход Al2
3	P4-01	Источник сигнала задания ПИД- регулятора процесса	30: С пульта управления
4	P4-06	Минимальная частота при управлении скоростью от ПИД- регулятора процесса	20 Гц
5	P4-22	Нижний предел выходного сигнала интегрирования ПИД регулятора процесса	40 % (по умолчанию)

9. Масштабирование сигнала задания и сигнала обратной связи

Для отображения значения сигнала задания и сигнала обратной связи ПИДрегулятора процесса в единицах измерения, соответствующих диапазону подключенного аналогового датчика давления, в параметре Р4-02 необходимо задать базовое значение, принимаемое за 100%. Например, для датчика с диапазоном измерения 0...16 бар необходимо установить значение Р4-02=16.

В параметрах можно настроить отображение значения сигнала обратной связи в базовых условных единицах, установленных в параметре Р4-02, на дисплее преобразователя частоты. Для этого установите Р6-05=16. Смена значения, отображаемого на дисплее, осуществляется кнопкой <<.

Значение сигналов после масштабирования можно посмотреть в параметрах:

Nº	Параметр	Наименование	
1	P9-19	Заданное значение ПИД-регулятора	
2	P9-20	Значение обратной связи ПИД- регулятора	
3	P9-21	Выходной сигнал ПИД-регулятора	

10. Настройка спящего режима

Подробное описание параметров настройки спящего режима приведено в полном руководстве по эксплуатации. Диаграмма работы спящего режима и основные параметры представлены ниже:

Nº	Параметр	Наименование	Значение
1	P20-01	Минимальная выходная частота	40%
2	P20-02	Максимальная выходная частота	100%
3	P20-60	Включение спящего режима	1: Включено
4	P20-61	Частота спящего режима	2%
5	P20-62	Давление спящего режима	2%
6	P20-63	Задержка входа в спящий режим	10 сек.
7	P20-64	Минимальная длительность спящего режима	300 сек
8	P20-65	Давление выхода из спящего режима	10%
9	P20-66	Задержка выхода из спящего режима	1 сек

Настройки спящего режима зависят от специфики объекта регулирования и могут отличаться для каждого конкретного случая.

 Запустите привод кнопкой «Пуск». Регулируйте задание вращением ручки потенциометра на панели управления ПЧ. Остановите привод повторным нажатием кнопки «Пуск».